The Lie-Group Shooting Method for Solving Multi-dimensional Nonlinear Boundary Value Problems

نویسنده

  • Chein-Shan Liu
چکیده

This paper presents a Lie-group shooting method for the numerical solutions of multi-dimensional nonlinear boundary-value problems, which may exhibit multiple solutions. The Lie-group shooting method is a powerful technique to search unknown initial conditions through a single parameter, which is determined by matching the multiple targets through a minimum of an appropriately defined measure of the mis-matching error to target equations. Several numerical examples are examined to show that the novel approach is highly efficient and accurate. The number of solutions can be identified in advance, and all possible solutions can be numerically integrated by using the fourth-order Runge–Kutta method. We also apply the Lie-group shooting method to a numerical solution of an optimal control problem of the Duffing oscillator.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Lie-Group Shooting Method for Nonlinear Two-Point Boundary Value Problems Exhibiting Multiple Solutions

The Lie-Group Shooting Method for Nonlinear Two-Point Boundary Value Problems Exhibiting Multiple Solutions Chein-Shan Liu1 Summary The present paper provides a Lie-group shooting method for the numerical solutions of second-order nonlinear boundary value problems exhibiting multiple solutions. It aims to find all solutions as easy as possible. The boundary conditions considered are classified ...

متن کامل

Sinc-Galerkin method for solving a class of nonlinear two-point boundary value problems

In this article, we develop the Sinc-Galerkin method based on double exponential transformation for solving a class of weakly singular nonlinear two-point boundary value problems with nonhomogeneous boundary conditions. Also several examples are solved to show the accuracy efficiency of the presented method. We compare the obtained numerical results with results of the other existing methods in...

متن کامل

VARIATIONAL HOMOTOPY PERTURBATION METHOD FOR SOLVING THE NONLINEAR GAS DYNAMICS EQUATION

A. Noor et al. [7] analyze a technique by combining the variational iteration method and the homotopy perturbation method which is called the variational homotopy perturbation method (VHPM) for solving higher dimensional initial boundary value problems. In this paper, we consider the VHPM to obtain exact solution to Gas Dynamics equation.

متن کامل

An ${cal O}(h^{8})$ optimal B-spline collocation for solving higher order boundary value problems

As we know the approximation solution of seventh order two points boundary value problems based on B-spline of degree eight has only ${cal O}(h^{2})$ accuracy and this approximation is non-optimal. In this work, we obtain an optimal spline collocation method for solving the general nonlinear seventh order two points boundary value problems. The ${cal O}(h^{8})$ convergence analysis, mainly base...

متن کامل

The Lie-Group Shooting Method for Quasi-Boundary Regularization of Backward Heat Conduction Problems

The Lie-Group Shooting Method for Quasi-Boundary Regularization of Backward Heat Conduction Problems Chih-Wen Chang1, Chein-Shan Liu2 and Jiang-Ren Chang1 Summary By using a quasi-boundary regularization we can formulate a two-point boundary value problem of the backward heat conduction equation. The ill-posed problem is analyzed by using the semi-discretization numerical schemes. Then, the res...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Optimization Theory and Applications

دوره 152  شماره 

صفحات  -

تاریخ انتشار 2012